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Asymptotic behavior of the Lotka-Volterra system of differential equations is 
analyzed [l, 21. The following aspects are considered: behavior of the Lotka - 
Volterra system for interactions of the predator-prey type with partial limita- 

tion, and the over-all stability in a model of competitive type with symmetric 
matrix of interactions. 

1, Introduction. In considering the kinetics of chemical reactions Lotka[l]and, 
then independently of him, Volterra [2] for describing the dynamics of group numbers that 
constitute a biological association, had proposed the following system of ordinary differ- 
ential equations : n 

~‘-.i’ = xi c bi + z a++ ) (i = 1, . . . ) n) 

j=l 
(1.1) 

where Zr (t) is the count (or mass) of the i-th group of the association (or of the sub- 

stance taking part in a chemical reaction) at instant t, the constants bi and aii define 
the rate of increase of the i -th group in the absence of any other, the constants aii de- 
fine the effect of interaction between groups on the rate of increase, and the prime denotes 
derivatives with respect to time t. 

Recently Volterra obtained some results of a qualitative character on the behavior of 
solutions x (t) = (rr (t), . . ., x,, (t)) of system (1.1) on various assumptions about vector 
b = (b,, . . .> bra) and matrix A = (Uij)nxn* These results were consolidated and syste- 
matized in [3] to which weshall subsequently refer. An exhaustive information on Vol- 
terra’s mathematical investigations in the field of ecology can be found in [4]. 

The admissibility of describing the evolution of biological associations by equations of the 

kind (1.1) was the subject of numerous publications: [5]. Some authors of these had noted the 
insufficient substantiation of two of Volterra’s basic assumptions used by him in the deri- 

vation of system (1.1). We mean here the principle of collision(in other words conjugate 
interactions) which makes it possible to limit the right-hand sidesofsystems(1.1) to quad- 
ratic terms, which in turn gave rise to particular complaints about the principle of equi- 

valence [3]. The latter results in the requirement for matrix A to be skew-symmetric 
and makes system (1.1) conservative, which cannot be substantiated experimentally. It 
should be pointed out that Volterra himself saw the shortcomings of the indicated prin- 
ciples, and had clearly defined the limits of their applicability [3]. He also obtained va- 
rious modifications of system (1.1) with arguments for and against the consideration of 
these, and indicated cases in which theoretical results of investigation of that system and 

its modifications are well supported by experimental data [S]. The necessity of a detailed 
analysis of system (1.1) and its possible modifications are stressed in the recent reprint 
of Kolmogorov s work [S] in which the importance of obtaining “qualitative results on qua- 
litative premises” is indicated. It can be stated at present that the Lotka-Volterraequa- 
tions represent one of the fundamental concepts of that branch of applied mathematics 
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generated by problems of theoretical ecology [7]. 
The attention of investigators to system (1.1) is drawn by its universality that was noted 

by Lotka [S] who based it on the following general proposition. Let the dynamics of some 
interacting objects be defined by the system of ordinary differential equations 

Xi’ =T Xi (Z,, . . ,, z,) (i = 1, . . .) n) 

If that system is isolated, then the equality Zi = 0 implies that Xi (z,, . . ., xi-I, 0, 

xi+17 . . ., x,) = 0. Using this relationship Lotka concluded that 

xi (21, . . ., z,,) = riG (T,, . . ., zrn) (i = 1, . . ., n) 

Function Gi represents in this case the generalized coefficients of relative growth, The 
simplest expression for such functions is, evidently, linear, i. e. 

Gi(r,,...,r,): bi+ i a ijxl 
(i= l,...,n) 

j=l 

which leads to Eqs. (1.1). 
The above imples that equations of the type (1.1) are in a certain sense ” follow-up” 

equations after the linear ones, as regards their complexity, in defining the evolution of 

various interacting objects. Equations of that kind occur in investigations of chemical 
reaction kinetics [1, 9, lo], of the activity of neutrons [ll], in mathematical economics 

[12, 131, and in sociology [14, 151. 
The American mathematician Kerner had constructed statistical mechanics of biolo- 

gical systems [16-M] based on the Lotka-Volterra equations. Some of the gaps in Ker- 
ner’s works were later filled in [19]. 

Numerical analysis of Eqs. (1.1) and comparison of theoretical and experimental data 
were the subject of numerous papers [20-221. A graphic method was proposed in [23] for 
analyzing stability for n < 3 by investigating isoclines. The conditions bf stability of 
the equilibrium position X* > 0 of system (1.1) in the “small” are presented in [24]. 

From among Soviet authors we select those who had considered the possible generali- 
zations of Volterra’s method [25 - 281. 

In concluding this brief survey we draw the attention to two recent publications [29, 
301 which provide a detailed exposition of the pres’ent state of the problem. 

In spite of the considerable number of publications devoted to the analysis of system 
(1. &several problems of qualitative character remain open, Among these the problem 
of stability is of the greatest interest [31, 321. In particular, the problem of over- all sta- 
bility of the equilibrium position of system (1.1) has not been fully investigated in the 

case of interaction of the “predator - prey” type with partial limitations, which formally 
corresponds to the presence in the diagonal of the skew-symmetric matrix A of nonzero 
elements. This question was considered in [33], however, the proof of the result derived 
there contains a substantial gap which casts doubt on its validity. The present work is 
devoted to the solution of this problem and to the consideration of conditions of stability 
of points of quiescence of system (1.1) in the case of interactions of the competing type, 

i.e. when Uij < 0 (i, j =: 1, . . ., n). 

2. P~~l~minrry remarkr.Thestatement ofthe considered problem implies that 

only nonnegative solutions of system (1.1) have a physical meaning. We denote by R,” 
the nonnegative orthant of the n-dimensional Euclidean space R”. The form of system 
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(1.1) clearly shows that when x (0) E R,n, then x (t) E R,” for all 1 t 1 ( 00, i, e. 
that R,” jb an invariant set UT system (I. 1). This property makes it possible to consider 

Kn as the phase space of the investigated system. 
The coordinates of the equilibrium position are determined by the system of equations 

Zi(bi+ ~“ij.rj’)=O fi=l***.‘,n) 

j=i 

(2.1) 

It can be shown that this system has not more than 2” isolated solutions. The greatest 
interest is attached to the analysis of the nontrivial equilibrium position, i. e, such that 
all components of vector x* which is the solution of system (2.1) are positive. 

Let us assume that such equilibrium position exists. In this case it is convenient to 
analyze system (1.1) by first reducing it to the form 

Zi_’ = l’i 5 fZij (Xj - “.j*) (i = I, . . . , aa) 
j=l 

(2.2) 

In the case of skew-symmetric matrix A this form makes it possible to obtain with- 
out too much trouble the expression for the first integral of system (2.2). In fact, if d= 

----A =I the quadratic form 

i,$l oif*pi EZ 0, VXER” 

Let us try to find such function V: R,” -+ R’ that its derivative along the 
of system (2.2) would be expressed as follows: 

* av (x) 
n 

V(x) = ~---&-,ik 2: U ij (Xj - Xj*)(Xi - T i*) f 0 
i=l i, j-=1 

trajectory 

(2+3) 

It will be seen that the partial derivatives of function V must satisfy relationships 

d’Fr (9 Xi - Xi* 
Pr= (i = 1, . . . 1 IE) 

whose integration yields 
axi xi 

V(x) = i (.zi - xi* In ri> (2.4) 
i=l 

It is exactly in this way that function T7 was in~odu~ed by Voltena [3]_ It is obvious 
that function V is for all x > 0 convex downward and reaches its minimum V (x*)= 
0 at point x = x*. Hence if A = -A*, x* is a singular point of the kind of a gene- 
ralized center. 

It is shown in [34] that a construction similar to (2.4) may be useful in investigations 
of stability not only of system (1. I), but also of equations of another kind. 

It is sometimes advantageous to consider besides function (2.4) as the Gapunov func- 
tion for system (2.1) also function 

u (x) = *?I ai (ri - Xi* ]n xi) (2.5) 

which was also introduced by Volterra [3]. The use of function (2.5) is expedient if the 
structure of matrix A is A = diag (&)D, where pi # 0 (i = 1, . . ., n), and mat- 
rix Li is skew-symmetric. Then,setting ai -I- 1 / pi we obtain u’ (x) EZ 0. 

If system( 1.1) in addition to the principle of equivalence which determines the previous- 

ly defined form of matrix d , is subjected to imitations negative terms aii < 0 appear 
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at the matrix diagonal. In that case the derivative of function V along the system tra- 
jectory is 

V’ (s) = $ aii (Xi - ri*)2 
il=r (2.6) 

If aii < 0 for all i = 1, . , ., n, I/’ (x) < 0 for x # 0 and, consequently, theequi- 
librium position X* is asymptotically stable in the large [3]. We remind thdt here and 
in what follows we consider only solutions that begin in R,“. If, however, the limitation 
is partia1,i.e. aii < 0 for i =-= 1, s I * , r and aii = 0 for 1: = r + 1, . . .7 IZ, 
which is closer ‘co actual situations, it is not possible to guarantee asymptotic stability 
without additional limitations, The corresponding sufficient conditions that guarantee 

asymptotic stability in the large are formulated below. 

3, lntet&etSonr of thei predator- Prey type wfth partial limitation. 
Theorem 1. Let elements of matrix A satisfy the following conditions: aij = 

-nji when i + j; aii < Q when i = 1, . . ., r; aii = 0 when i = r + 4, ._, n , 
and let system (1.1) have an isolated equilibrium position x* > (1.. Finally; let the sys- 
tem of (2r -i- 1) equations in (n - r) variables 

have no nonisolated solutions. Then any solution x ft) of system (1,l) with initial con- 
ditions x (0) $ 0 is bounded, and indefinitely tends to point x* when i -* 00 

Proof. Let us prove that function (2.4) satisfies conditions of the Barbashin-Krasov- 
skii theorem [35], 

It was already indicated that V (x) > 0 when x > 0 and x =#= 0. It follows from 
(2,6) that v’ (x) < 0 7 for all x f= a”. It is thus necessary to show that surfaces of 

level B (x) = c are bounded for x > 0 and c > V (x*) , and that the set V*= (X: 
x > 0, r/” (x) = 0) does not contain integral trajectories, except the quiescent point 

x*. The boundedness of the surface of level v (x) = c is almost obvious, It is suffici- 
ent to note that for considerable c it is possible to find A that is independent of c and 
such that the surface V (x) = c lies entirely inside the hypercube 0 < 2; < hc (i = 

1 3 * f .I a). This problem was considered in detail in [19& 
Let us write the explicit expression for the set V*. From the relationship 

If we assume that y (8) 5 (& (@$ 1 . .) g, (9) > 0 is the solution of system (1.1) 
such that y (t) E V* when 1 t / < 00 , we obtain 
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c) &i+ (Yi @> - Xi* In ZJi (t)) = C 

Thus if system (3.1) has only isolated solutions, then owing to the uniqueness of the 

quiescent point X*, the set v* does not contain integral trajectories. The theorem is 
proved. 

In the majority of cases of investigations of specific objects, of interest are systems 
that by Andronov- Pontriagin definition are ‘* coarse” , i.e. systems whose topological 
structure does not change for small variations of the right-hand sides of equations, In 
the considered case it is necessary to see that perturbations of the right-hand sides do not 

impair the structures of vector b and matrix A , when formulating the conditions of 
coarseness. Taking this into account we call system (1.1) coarse, if for fairly small Eij 

and TJ (4 j = 1, . . ., n), such that (ait -I- Q) = -_(uJ~ -I- EJ~) and sign (aij + 
ei& = sign (oij) when i, j = 1, . . , &and sign (bi -/- Tli) = sign (bi) when i = 
1 9 - * , n, the system of equations 

Xi’=Xi[(bi+TJi)+ i](Uij+eij)Xj] (i=lt’**Yn) (3.2) 
j=l 

and system (1.1) have the same topological structure, 

Corollary. If system (1.1) is coarse, the elements of matrix A satisfy the condi- 
tions of Theorem 1, and r > (n - 1) / 3 then each solution x (t) of system (1.1) with 
initial conditions x (0) > 0 is bounded and indefinitely tends to point x* when t -+ 00. 

Proof. By assumption r > (n - 1)/S, i.e. the number of unknowns in system (3.1) 
is not greater than the number of equations. If system (3.1) has only isolated solutions, 
the proof of this corollary follows from Theorem 1. Let us assume that system (3.1) has 

nonisolated solutions and consider besides (1.1) its perturbed variant, i. e. system (3.2). 
Taking advantage of the freedom of perturbation selection, we chose these so that sys- 
tem (3.1) has only isolated solutions. For this it is sufficient to choose, for instance, the 

perturbations so that the rank of matrix composed of the first derivative functions appear- 

ing in the perturbed system (3.1) and computed for the considered point is equal n - r. 
Since by Theorem 1 all solutions of system (3.2) with initial conditions x, (0) > 0 are 
bounded and tend to the quiescent point xz *, the same statement is valid also for the 

input system. 
However in certain cases it is better to substitute a specific consideration of the struc- 

ture of set T/* for the above results. 

Let us consider a biological association consisting of populations of n species in which 
each following species is a consumer of the preceding, i. e. the number i species con- 
sumes the i - 1 species and only the latter, with no natural limitation for all species, 

except the first whose growth is Limited [26]. In that case system (1.1) is of the form 

XI’ = Xl (bl - %1% - %4 

3.i’ = .Ti (bi + Ui, i-_1.Ti-_l - Ui, i+rXi+l) 
(3.3) 

a n. n+1 = 0 (i = 2, . ., n) 
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Coordinates of the equilibrium position of system (3.3) can be explicitly defined(we 
omit here the procedure,since it does not present any difficulties). 

We define coefficients ai (i = 1, . . . , n) of function C (see (2.5) ) as follows: 

u1 = 1, 
a. 

Zr ?$l 
%{I -W,m. (i==J,...,ra--1) 

ttl. i 

For these values of ai we have u’ (x) = --a,, (x1 - x1*)*. We shall show that the 
set I;* 1 {x: 5, = x1*, x > O} does not contain integral trajectories,except the 
quiescence point x = x*. In fact the structure of Eqs. (3.3) is such that the following 
inferences are justified : 

I’,’ (2) = 0 =;‘ Lc? (t> = x2* 

cr.?’ (t) = 0 =3 Jg (t) I= x3* 

. . . . . . . . . . 

which proves the absence of integral trajectories in the set U* , except the point x* and, 

consequently, also the following theorem. 
Theorem 2. Let some association consist of species that interact as “predator - 

prey ‘I. Let each following species be a consumer of only the preceding one, and let the 
growth of the first species be limited. Then, if the association has an equilibrium state 
x* > 0, the association evolution is such that for any initial conditions x (0) > 0 
x (t)-+ x * when t--t 00. 

4, Interaction8 of the competing kind. For this kind of interaction the 
elements of matrix A are nonpositive and vector b > 0. With certain additional li- 
mitations imposed on the interaction mechanism (these limitations were considered in 
detail in [38]) matrix A proves to be symmetric. It was proposed in (39) to investigate 
the solutions of system (1.1) with symmetric matrix A by using functions 

(4.1) 

whose derivative along solutions of system (1.1) is of the form 

P(x)=tXi(+&)*>O for x>O 

i=l 

(4.2) 

The last inequality with some additional notation will be used for formulating another 
theorem, 

Let M c R,” be an invariant set of system (1.1) consisting of points of quiescence. 
Set ikf consists in the general case of several components of connectedness. We denote 
by M+ that of its connectedness components which contains points at positive coordi- 
nates, i. e. M+ fi Int R,” # (zr (0 denotes an empty set and Int R,” the inter- 
ior of set R,“). It is evidently possible to speak of a single component of M+, since 
the coordinates of points of quiescence with positive coordinates are determined by the 
linear system of Eqs. (2.1). Note that when det A # 0, then M, either consists of a 

single point x* > 0 or M+ = Izj. 
Theorem 3. If matrix A < 0 and vector b > 0 , then: 

1) the limit set of any bounded solution x (t) of system (1. 1) with initial condi- 
tions x (0) > 0 consists of two quiescence points; 
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2) the set M+ is asymptotically stable, if and only if function F reaches its max- 

imum (proper or improper) in it, and 
3) all components of set M \ M, are unstable. 

Proof. Formulas (4.1) and (4.2) clearly imply that 

{x: F (x) = 0, x > 0) = {x: F’ (x) = 0, x > 0) = M 

and, consequently, the first two statements of the theorem directly follow from the rela- 
ted LaSalle and Chetaev theorems (see [40], pp. 75 and 52, respectively). Validity of the 
third statement is proved by noting that owing to the inequality b > 0 function F 
does not reach its local maximum at any of the quiescence points x*~+R+“(pr R+” 
is the boundary of set R,“) . 

Corollary. Let M+ # @ and matrix A not have positive characteristic num- 

bers. Then any solution x (t) of system (1.1) with initial conditions x (0) > 0 tends 

indefinitely to set flf+ when t + 00. 

Proof. Assuming that x* E M, and y = x - x* , we obtain for function F the 

following expression : 

F(Y) = + 2 aijYiYj 
i. j=l 

Thus for function F to reach its maximum at point X* it is necessary and sufficient that 
the matrix does not have positive characteristic numbers. 

We stress that in accordance with the corollary formulated above,the stability of set 
M+ is determined only by the properties of matrix A and is independent of the linear 

growth coefficients bi (i = 1, . . ., n). 
The author thanks B. G. Zaslavskii for reading this-paper and making a number of use- 

ful remarks. 
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